Sample Test Report

Your Company Name

Your Product

Model X-100

Radiated and Conducted Emissions

FCC, Part 15B
Canada, ICES-003
AS/NZS 3548
VCCI (Japan)
BCIQ, CNS 13438
EMC Directive, 89/336/EEC

Test # B00999

Test Site Services, Inc.
P.O. Box 766
Marlboro, MA 01752
U.S.A.
Phone/Fax: (508) 481-1684

This report shall not be reproduced, in whole or in part without the written approval of Test Site Services Inc.
This report must not be used by the recipient to claim product endorsement by NVLAP or any other agency of the U.S. Government
Table of Contents

GENERAL INFORMATION.. 1
EQUIPMENT UNDER TEST DESCRIPTION.. 3
TEST SUMMARY.. 4
BLOCK DIAGRAM .. 6
BLOCK DIAGRAM DESCRIPTION .. 7
CABLE DESCRIPTION ... 14
SOFTWARE DESCRIPTION ... 16
MODES OF OPERATION .. 17
TEST EQUIPMENT LIST ... 19
APPENDIX A, TEST DATA ... A1
APPENDIX B, TEST PHOTOGRAPHS .. B1
APPENDIX C, TEST PROCEDURES ... C1
APPENDIX D, MEASUREMENT FACILITIES INFORMATION ... D1

Your Company Name 1/22/00 EUT: Your Product
EMI Test Report

for

Your Company Name

Test Number: B00999

Product Name: Your Product

Regulation:
- FCC, Part 15B (U.S.)
- ICES-003 (Canada)
- AS/NZS 3548
- VCCI (Japan)
- BCIQ / CNS 13438
- EMC Directive, 89/336/EEC

Date: 1/22/00

Report Reviewed & Accepted by:

Your Company Name
2000 Maple Street
Springville, NN 99999-3333
Phone: (123) 456-7890
Fax: (123) 456-7899

Report Issued By:

Richard L. Wiedeman, Laboratory Director

Tested By:

John Doe, Test Engineer

This test report is not valid without the signatures of Test Site Services, Inc. personnel.
Administrative Data

Regulation
: FCC, Part 15B (U.S.)
: ICES-003 (Canada)
: AS/NZS 3548 (Australia, New Zealand)
: VCCI (Japan)
: BCIQ (Taiwan)

Level
: Class A

Test Method
: ANSI C63.4-1992
: CSA C108.8-M1983
: VCCI, V3/97.04
: CNS 13438

Test Type
: Qualification

Manufacturer
: Your Company Name

EUT Type/Model #
: Widget / X-100

Date(s) of Test
: 1/22/00

Customer Personnel
: John Adams
: John Doe

TSS Personnel
: R. Wiedeman
: John Doe

Test Location
: Open Area Test Site
Test Site Services, Inc.
30 Birch St.
Milford, MA 01757 U.S.A.

NOTICE
: FCC Rule 2.955 requires that a Verification Report for a Class A Computing Device must be signed by "an Official of the Company responsible for the device". A signature block has been provided on the first page for this purpose.
EUT Description

The EUT (Your Product) is a Widget that is faster than a speeding bullet, more powerful than a locomotive, and leaps tall buildings in a single bound.

A complete description of the EUT may be found on block identifier page one.

The tests were run in a typical configuration including the following support equipment;

1) Personal Computer
2) Ethernet Hub
3) Switching Hub
4) Switching Hub
5) Switching Hub
6) Modem

REASON FOR TEST

Qualification of new product for all international specifications for radiated and conducted emissions.

CHANGES MADE DURING TEST

None

DEVIATIONS FROM STANDARD TEST METHOD

None
Test Summary

The Your Product complied with the FCC Part 15 Subpart B and Canadian ICES-003 Limits for equipment when tested in the system configuration defined herein.

The following table indicates the margins (i.e. difference between measurement point and limit) of the six (6) worst case data points:

<table>
<thead>
<tr>
<th>TEST CLASS</th>
<th>MARGIN TO SPEC (db)</th>
<th>FREQUENCY (Mhz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radiated Emissions E Field</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(230 VAC / 50 Hz.)</td>
<td>-4.4</td>
<td>299.12</td>
</tr>
<tr>
<td></td>
<td>-4.6</td>
<td>80.00</td>
</tr>
<tr>
<td></td>
<td>-4.9</td>
<td>277.06</td>
</tr>
<tr>
<td></td>
<td>-5.4</td>
<td>432.06</td>
</tr>
<tr>
<td></td>
<td>-6.3</td>
<td>332.36</td>
</tr>
<tr>
<td></td>
<td>-7.3</td>
<td>125.92</td>
</tr>
<tr>
<td>Conducted Emissions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(208 VAC / 60 Hz.)</td>
<td>-12.1</td>
<td>.4905</td>
</tr>
<tr>
<td></td>
<td>-15.6</td>
<td>9.304</td>
</tr>
<tr>
<td></td>
<td>-17.6</td>
<td>8.816</td>
</tr>
<tr>
<td></td>
<td>-18.7</td>
<td>.8000</td>
</tr>
<tr>
<td></td>
<td>-20.6</td>
<td>15.67</td>
</tr>
<tr>
<td></td>
<td>-24.6</td>
<td>1.157</td>
</tr>
</tbody>
</table>
Test Summary

The Your Product complied with the EN55022/CISPR22, VCCI, AS/NZS and BCIQ Limit when tested in the system configuration defined herein.

The following table indicates the margins (i.e. difference between measurement point and limit) of the six (6) worst case data points:

<table>
<thead>
<tr>
<th>TEST CLASS</th>
<th>MARGIN TO SPEC (db)</th>
<th>FREQUENCY (Mhz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radiated Emissions E Field</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(230 VAC / 50 Hz.)</td>
<td>-3.8</td>
<td>125.92</td>
</tr>
<tr>
<td></td>
<td>-4.6</td>
<td>150.00</td>
</tr>
<tr>
<td></td>
<td>-5.0</td>
<td>299.12</td>
</tr>
<tr>
<td></td>
<td>-5.1</td>
<td>125.00</td>
</tr>
<tr>
<td></td>
<td>-5.4</td>
<td>160.00</td>
</tr>
<tr>
<td></td>
<td>-5.5</td>
<td>80.00</td>
</tr>
<tr>
<td>Conducted Emissions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(230 VAC / 50 Hz.)</td>
<td>-6.3</td>
<td>1.002</td>
</tr>
<tr>
<td></td>
<td>-8.7</td>
<td>13.63</td>
</tr>
<tr>
<td></td>
<td>-11.6</td>
<td>17.76</td>
</tr>
<tr>
<td></td>
<td>-11.7</td>
<td>9.356</td>
</tr>
<tr>
<td></td>
<td>-16.1</td>
<td>27.400</td>
</tr>
<tr>
<td></td>
<td>-17.3</td>
<td>21.31</td>
</tr>
</tbody>
</table>
Block Diagram for Your Product

PS = Power Cord Shielded
DS = Data Cable Shielded
CX = Coaxial Cable
PU = Power Cord Unshielded
DS = Data Cable Shielded
FL = Fiber Link
■ = Ferrite Bead
☑ = Connector
EUT Technical Data – Block Identifier 1

Description: New Widget

Manuf/Model: Your Company, Inc.
Model No.: X-100

Part#/Rev: 000-111-222 / Rev. 1.1

Serial #: 000 000 001

FCC/FTZ Ident.: N/A

Power (Rated): 90 – 240 VAC 50 / 60 Hz.
Current: 10 / 5 Amps

Power (Tested): 230 VAC 50 Hz.
Current: 5 Amps

Internal Options:
- Plug in widget # 1
 - M/N: 001
 - S/N: 000 001
 - Rev. 1.1
- Plug in widget # 2
 - M/N: 002
 - S/N: 000 002
 - Rev. 2.2
- Plug in widget # 3
 - M/N: 003
 - S/N: 000 003
 - Rev. 3.3

External Options: None

Frequencies Generated:
- 10.00 MHz.
- 20.00 MHz.
- 25.00 MHz.
- 33.00 MHz.
- 100.00 MHz.
- 600.00 MHz.
- 1.20 GHz.

Comments:
Support Equipment Data – Block Identifier 2

Description : Personal Computer

Manuf/Model : Company Model No.: FPS

Part #/Rev : 001 / Rev. 5.5

Serial # : 111 222 333

FCC/FTZ Ident. : ABC DEF 123456

Power : 100 –240 VAC 50 / 60 Hz.

Internal Options:
Ethernet Adapter M/N 12345 S/N 123456 Rev. A
SCSI Adapter M/N 67890 S/N 789012 Rev. B

External Options:
Keyboard M/N 001 S/N 001 Rev. A

Frequencies Generated:
233.00 MHz. 10.00 MHz. 25.00 MHz.

Comments:
Support Equipment Data – Block Identifier 3

<table>
<thead>
<tr>
<th>Description</th>
<th>Ethernet Hub</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuf/Model</td>
<td>Company</td>
</tr>
<tr>
<td>Model No.</td>
<td>222</td>
</tr>
<tr>
<td>Part #/Rev</td>
<td>000123 / Rev. 6.6</td>
</tr>
<tr>
<td>Serial #</td>
<td>999 999</td>
</tr>
<tr>
<td>FCC/FTZ Ident.</td>
<td>N/A</td>
</tr>
<tr>
<td>Power</td>
<td>120 VAC 60 Hz. to 12 VDC</td>
</tr>
</tbody>
</table>

Internal Options:
None

External Options:

<table>
<thead>
<tr>
<th>AC/DC Power Adapter</th>
<th>M/N</th>
<th>S/N</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>123</td>
<td>555 555</td>
</tr>
</tbody>
</table>

Frequencies Generated:
10.00 MHz.

Comments:
Support Equipment Data – Block Identifier 4

<table>
<thead>
<tr>
<th>Description</th>
<th>: Switching Hub</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuf/Model</td>
<td>: Company</td>
</tr>
<tr>
<td>Part #/Rev</td>
<td>: 1000-000 Rev. 1.1</td>
</tr>
<tr>
<td>Serial #</td>
<td>: 001</td>
</tr>
<tr>
<td>FCC/FTZ Ident.</td>
<td>: N/A</td>
</tr>
<tr>
<td>Power</td>
<td>: 120 VAC 60 Hz.</td>
</tr>
</tbody>
</table>

Internal Options:
None

External Options:
None

Frequencies Generated:
10.00 MHz. 100.00 MHz.

Comments:
Support Equipment Data – Block Identifier 5

<table>
<thead>
<tr>
<th>Description</th>
<th>Switching Hub</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuf/Model</td>
<td>Company</td>
</tr>
<tr>
<td>Model No.</td>
<td>456</td>
</tr>
<tr>
<td>Part #/Rev</td>
<td>789 Rev. 9.9</td>
</tr>
<tr>
<td>Serial #</td>
<td>000-999</td>
</tr>
<tr>
<td>FCC/FTZ Ident.</td>
<td>N/A</td>
</tr>
<tr>
<td>Power</td>
<td>120 VAC 60 Hz.</td>
</tr>
</tbody>
</table>

Internal Options:
None

External Options:
None

Frequencies Generated:
10.00 MHz. 100.00 MHz.

Comments:
Support Equipment Data – Block Identifier 6

<table>
<thead>
<tr>
<th>Description</th>
<th>: Switching Hub</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuf/Model</td>
<td>: Company</td>
</tr>
<tr>
<td>Model No.</td>
<td>: 333</td>
</tr>
<tr>
<td>Part #/Rev</td>
<td>: 111-222 Rev. 3.33</td>
</tr>
<tr>
<td>Serial #</td>
<td>: 123456</td>
</tr>
<tr>
<td>FCC/FTZ Ident.</td>
<td>: N/A</td>
</tr>
<tr>
<td>Power</td>
<td>: 230 VAC 50 Hz.</td>
</tr>
</tbody>
</table>

Internal Options:
None

External Options:
None

Frequencies Generated:
10.00 MHz. 100.00 MHz.

Comments:
Support Equipment Data – Block Identifier 7

<table>
<thead>
<tr>
<th>Description</th>
<th>Modem</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuf/Model</td>
<td>Company</td>
</tr>
<tr>
<td>Model No.</td>
<td>111</td>
</tr>
<tr>
<td>Part #/Rev</td>
<td>222 / Rev 33.3</td>
</tr>
<tr>
<td>Serial #</td>
<td>444-555</td>
</tr>
<tr>
<td>FCC/FTZ Ident.</td>
<td>N/A</td>
</tr>
<tr>
<td>Power</td>
<td>120 VAC to 14 VDC</td>
</tr>
</tbody>
</table>

Internal Options:
None

External Options:

<table>
<thead>
<tr>
<th>AC / DC Power Adapter</th>
<th>M/N</th>
<th>ABC-123</th>
<th>S/N</th>
<th>000-123</th>
<th>Rev.</th>
<th>1.00</th>
</tr>
</thead>
</table>

Frequencies Generated:
N/A

Comments:
Cable Descriptions

(A1) Function: AC Power
Qty = 1
Type: Shielded
Length: 2.0 Meters
of Conductors: 3
Connector Shell: Unshielded
Part Number: 000-123
Miscellaneous: E.U.T.

(B1-B5) Function: AC Power
Qty = 5
Type: Unshielded
Length: 1.8 Meters
of Conductors: 3
Connector Shell: Unshielded
Part Number:
Miscellaneous:

(C-1) Function: DC Power
Qty = 1
Type: Unshielded
Length: 1.5 Meters
of Conductors: 2
Connector Shell: Unshielded
Part Number:
Miscellaneous: Class 2 Plug-in Transformer 14VDC

(D-1) Function: Modem
Qty = 1
Type: Shielded
Length: 1.5 Meters
of Conductors: 9
Connector Shell: Shielded
Part Number:
Miscellaneous: RS 232
Cable Descriptions

(E1-E5)
Function : Data
Qty = 5
Type : Unshielded
Length : 6.0 Meters
of Conductors : 8
Connector Shell : Unshielded
Part Number : 123456
Miscellaneous : 10 base T Cat. 5

(F1-F5)
Function : Data
Qty = 5
Type : Unshielded
Length : 10 Meters
of Conductors : 0
Connector Shell : Unshielded
Part Number : 038-001-488
Miscellaneous : Fiber Link

(G)
Function : Monitor Cable
Qty = 1
Type : Shielded
Length : 1.5 Meters
of Conductors : 13
Connector Shell : Shielded
Part Number :
Miscellaneous :

(H)
Function : Keyboard Cable
Qty = 1
Type : Shielded
Length : 2.0 Meters
of Conductors : 8
Connector Shell : Shielded
Part Number :
Miscellaneous :

Your Company Name 1/22/00 EUT: Your Product
Test Software Description

TITLE : Your Application

PART #/REV. : 2.3

FUNCTION : To manage all functions and sweep up afterwards

REPEAT TIME : continuous

LAN INFORMATION

SPEED (MBITS/SEC.): 1,000,000

DATA PATTERN : H

PACKET LENGTH : 6 inches

DELAY (µS) : 200 uS

BITS/SECOND : 10,000,000 / 10,000

% of UTILIZATION : 100 %

RUN INSTRUCTIONS

Power up all widgets and then press go.
OPERATIONAL MODE(s) DURING TEST

OPERATIONAL MODES AVAILABLE:
Simplex, Duplex, Triplex

MODE TESTED: ALL

FUNCTION : To Exercise EUT as in a customer application.

RATIONALE : ALL Modes running has been determined to be worst case RF emissions in pre-testing.
EUT I/O Ports – Cable Configuration

All testing was performed with the following cables/terminators connected to the EUT I/O ports:

<table>
<thead>
<tr>
<th>EUT I/O Ports</th>
<th>Cable Attached</th>
</tr>
</thead>
<tbody>
<tr>
<td>(All available by type)</td>
<td>(Yes/No)</td>
</tr>
<tr>
<td>SCSI 1-16</td>
<td>Yes</td>
</tr>
<tr>
<td>SCSI 17-40</td>
<td>No</td>
</tr>
<tr>
<td>100 Base T 1-11</td>
<td>Yes</td>
</tr>
<tr>
<td>100 Base T 12-69</td>
<td>No</td>
</tr>
<tr>
<td>ATM 1-3</td>
<td>Yes</td>
</tr>
<tr>
<td>FDDI 1-8</td>
<td>Yes</td>
</tr>
<tr>
<td>FDDI 8-15</td>
<td>No</td>
</tr>
<tr>
<td>1000 Base (Gigabit) 1-3</td>
<td>Yes</td>
</tr>
</tbody>
</table>

NOTE: FCC Tests : ONE of each TYPE of PORT must be cabled.
CISPR Tests : ONE of each TYPE of PORT must be cabled.
Test Equipment List

<table>
<thead>
<tr>
<th>#</th>
<th>Equipment Type</th>
<th>Manufacturer</th>
<th>Model #</th>
<th>Serial #</th>
<th>Cal Date</th>
<th>Cal Due</th>
<th>Used</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Spectrum Analyzer</td>
<td>Hewlett-Packard</td>
<td>8568B</td>
<td>2207A01917</td>
<td>8/9/99</td>
<td>8/9/00</td>
<td>X</td>
</tr>
<tr>
<td>2</td>
<td>Quasi-Peak Adapter</td>
<td>Hewlett-Packard</td>
<td>85650A</td>
<td>2043A00249</td>
<td>8/9/99</td>
<td>8/9/00</td>
<td>X</td>
</tr>
<tr>
<td>3</td>
<td>RF Pre-Selector</td>
<td>Hewlett-Packard</td>
<td>85685A</td>
<td>2648A00500</td>
<td>8/9/99</td>
<td>8/9/00</td>
<td>X</td>
</tr>
<tr>
<td>4</td>
<td>Spectrum Analyzer</td>
<td>Hewlett-Packard</td>
<td>8566B</td>
<td>2532A02250</td>
<td>5/8/99</td>
<td>5/8/00</td>
<td>X</td>
</tr>
<tr>
<td>5</td>
<td>Quasi-Peak Adapter</td>
<td>Hewlett-Packard</td>
<td>85650A</td>
<td>2521A00665</td>
<td>5/8/99</td>
<td>5/8/00</td>
<td>X</td>
</tr>
<tr>
<td>6</td>
<td>RF Pre-Selector</td>
<td>Hewlett-Packard</td>
<td>85685A</td>
<td>2510A00186</td>
<td>5/8/99</td>
<td>5/8/00</td>
<td>X</td>
</tr>
<tr>
<td>7</td>
<td>EMI Receiver</td>
<td>Rhode & Schwarz</td>
<td>ESV33</td>
<td>8726315</td>
<td>11/11/99</td>
<td>11/11/00</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Comb Generator</td>
<td>Com Power</td>
<td>CG-520</td>
<td>20129</td>
<td>5/18/99</td>
<td>5/18/00</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>RF Probe</td>
<td>Fischer</td>
<td>F-33-1</td>
<td>367</td>
<td>1/14/99</td>
<td>1/14/00</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>RF Pre-Amplifier</td>
<td>Hewlett Packard</td>
<td>8447D</td>
<td>1937A02850</td>
<td>5/24/99</td>
<td>5/24/00</td>
<td>X</td>
</tr>
<tr>
<td>11</td>
<td>Pre-Amplifier</td>
<td>Hewlett-Packard</td>
<td>8449B</td>
<td>3008A00952</td>
<td>5/27/99</td>
<td>5/27/00</td>
<td>X</td>
</tr>
<tr>
<td>12</td>
<td>Biconical Antenna</td>
<td>Schwarzbeck</td>
<td>BBA9106</td>
<td>0101</td>
<td>5/11/99</td>
<td>5/11/00</td>
<td>X</td>
</tr>
<tr>
<td>13</td>
<td>Biconical Antenna</td>
<td>Schwarzbeck</td>
<td>BBA9106</td>
<td>0102</td>
<td>5/11/99</td>
<td>5/11/00</td>
<td>X</td>
</tr>
<tr>
<td>14</td>
<td>Log Periodic Antenna</td>
<td>Schwarzbeck</td>
<td>UHALP9107</td>
<td>9107718</td>
<td>6/1/99</td>
<td>6/1/00</td>
<td>X</td>
</tr>
<tr>
<td>15</td>
<td>Log Periodic Antenna</td>
<td>Schwarzbeck</td>
<td>UHALP9107</td>
<td>0103</td>
<td>6/1/99</td>
<td>6/1/00</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Mag Loop Antenna</td>
<td>EMCO</td>
<td>6502</td>
<td>9307-2841</td>
<td>6/1/99</td>
<td>6/1/00</td>
<td>X</td>
</tr>
<tr>
<td>17</td>
<td>Horn Antenna</td>
<td>EMCO</td>
<td>3115</td>
<td>9308-4132</td>
<td>10/17/99</td>
<td>10/17/00</td>
<td>X</td>
</tr>
<tr>
<td>18</td>
<td>Active Monopole Ant.</td>
<td>EMCO</td>
<td>3301B</td>
<td>9510-3625</td>
<td>5/29/99</td>
<td>5/29/00</td>
<td>X</td>
</tr>
<tr>
<td>19</td>
<td>Tuned Dipole Antenna</td>
<td>Comp Design</td>
<td>A100</td>
<td>445</td>
<td>1/18/99</td>
<td>1/18/00</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Tuned Dipole Antenna</td>
<td>Comp Design</td>
<td>A100</td>
<td>494</td>
<td>8/25/99</td>
<td>8/25/00</td>
<td>X</td>
</tr>
<tr>
<td>21</td>
<td>LISN 3x24 A</td>
<td>Solar</td>
<td>8012-50-24</td>
<td>0103</td>
<td>9/15/98</td>
<td>9/15/99</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>LISN 4 x 25 A</td>
<td>Schwarzbeck</td>
<td>NNLA8120</td>
<td>8120458A</td>
<td>8/21/99</td>
<td>8/21/99</td>
<td>X</td>
</tr>
<tr>
<td>23</td>
<td>LISN 4 x 100 A</td>
<td>Schwarzbeck</td>
<td>NNLA8121</td>
<td>8121237</td>
<td>1/21/99</td>
<td>1/21/00</td>
<td>X</td>
</tr>
<tr>
<td>24</td>
<td>LISN 3 x 25 A</td>
<td>EMCO</td>
<td>3825/2</td>
<td>8904-1483</td>
<td>7/9/99</td>
<td>7/9/00</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Antenna Mast</td>
<td>EMCO</td>
<td>Daily</td>
<td>Daily</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Mast Controller</td>
<td>EMCO</td>
<td>1050</td>
<td>1267</td>
<td>Daily</td>
<td>Daily</td>
<td>X</td>
</tr>
<tr>
<td>27</td>
<td>Turntable</td>
<td>Macton</td>
<td>Daily</td>
<td>Daily</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>Turntable Controller</td>
<td>EMCO</td>
<td>101762</td>
<td>8908-1290</td>
<td>Daily</td>
<td>Daily</td>
<td>X</td>
</tr>
</tbody>
</table>
Appendix A

TEST DATA
<table>
<thead>
<tr>
<th>Freq (MHz)</th>
<th>Signal Level (dBuV)</th>
<th>Polarization</th>
<th>Antenna Height (cm)</th>
<th>Table Azimuth (Degrees)</th>
<th>Detector</th>
<th>Antenna Factor</th>
<th>Cable Loss (dB)</th>
<th>Amp. Factor</th>
<th>Product Level</th>
<th>CISPR A Limit (dBuV/M)</th>
<th>Margin CISPR A (dB)</th>
<th>Margin FCC A (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>80.00</td>
<td>24.7</td>
<td>V</td>
<td>170</td>
<td>-209</td>
<td>QP</td>
<td>6.6</td>
<td>1.2</td>
<td>0.0</td>
<td>32.5</td>
<td>40.0</td>
<td>-7.5</td>
<td>-6.6</td>
</tr>
<tr>
<td>80.08</td>
<td>28.3</td>
<td>V</td>
<td>205</td>
<td>-168</td>
<td>QP</td>
<td>6.6</td>
<td>1.2</td>
<td>0.0</td>
<td>36.1</td>
<td>40.0</td>
<td>-3.9</td>
<td>-3.0</td>
</tr>
<tr>
<td>112.50</td>
<td>21.3</td>
<td>V</td>
<td>401</td>
<td>0</td>
<td>QP</td>
<td>11.8</td>
<td>1.3</td>
<td>0.0</td>
<td>34.4</td>
<td>40.0</td>
<td>-5.6</td>
<td>-9.1</td>
</tr>
<tr>
<td>120.00</td>
<td>22.5</td>
<td>V</td>
<td>401</td>
<td>0</td>
<td>QP</td>
<td>13.0</td>
<td>1.4</td>
<td>0.0</td>
<td>36.9</td>
<td>40.0</td>
<td>-3.1</td>
<td>-6.6</td>
</tr>
<tr>
<td>132.00</td>
<td>15.5</td>
<td>V</td>
<td>401</td>
<td>0</td>
<td>QP</td>
<td>14.2</td>
<td>1.5</td>
<td>0.0</td>
<td>31.2</td>
<td>40.0</td>
<td>-8.8</td>
<td>-12.3</td>
</tr>
<tr>
<td>150.00</td>
<td>20.8</td>
<td>V</td>
<td>340</td>
<td>-189</td>
<td>QP</td>
<td>14.5</td>
<td>1.6</td>
<td>0.0</td>
<td>36.9</td>
<td>40.0</td>
<td>-3.1</td>
<td>-6.6</td>
</tr>
<tr>
<td>200.00</td>
<td>16.0</td>
<td>V</td>
<td>401</td>
<td>-95</td>
<td>QP</td>
<td>16.6</td>
<td>1.8</td>
<td>0.0</td>
<td>34.4</td>
<td>40.0</td>
<td>-5.6</td>
<td>-9.1</td>
</tr>
<tr>
<td>225.00</td>
<td>14.4</td>
<td>V</td>
<td>186</td>
<td>-162</td>
<td>QP</td>
<td>17.4</td>
<td>2.0</td>
<td>0.0</td>
<td>33.8</td>
<td>40.0</td>
<td>-6.2</td>
<td>-12.6</td>
</tr>
<tr>
<td>262.51</td>
<td>13.6</td>
<td>V</td>
<td>100</td>
<td>-164</td>
<td>QP</td>
<td>18.4</td>
<td>2.2</td>
<td>0.0</td>
<td>34.2</td>
<td>47.0</td>
<td>-12.8</td>
<td>-12.2</td>
</tr>
<tr>
<td>300.00</td>
<td>22.0</td>
<td>V</td>
<td>100</td>
<td>-287</td>
<td>PK</td>
<td>15.2</td>
<td>2.4</td>
<td>0.0</td>
<td>39.6</td>
<td>47.0</td>
<td>-7.5</td>
<td>-6.9</td>
</tr>
<tr>
<td>375.00</td>
<td>21.0</td>
<td>V</td>
<td>100</td>
<td>0</td>
<td>QP</td>
<td>16.2</td>
<td>2.4</td>
<td>0.0</td>
<td>39.6</td>
<td>47.0</td>
<td>-7.4</td>
<td>-6.8</td>
</tr>
<tr>
<td>396.00</td>
<td>21.9</td>
<td>V</td>
<td>100</td>
<td>-62</td>
<td>PK</td>
<td>16.5</td>
<td>2.4</td>
<td>0.0</td>
<td>40.8</td>
<td>47.0</td>
<td>-6.2</td>
<td>-5.6</td>
</tr>
<tr>
<td>412.50</td>
<td>21.7</td>
<td>V</td>
<td>100</td>
<td>0</td>
<td>PK</td>
<td>16.7</td>
<td>2.5</td>
<td>0.0</td>
<td>40.9</td>
<td>47.0</td>
<td>-6.1</td>
<td>-5.5</td>
</tr>
<tr>
<td>675.01</td>
<td>16.3</td>
<td>V</td>
<td>100</td>
<td>-383</td>
<td>QP</td>
<td>21.0</td>
<td>3.7</td>
<td>0.0</td>
<td>41.0</td>
<td>47.0</td>
<td>-6.0</td>
<td>-5.4</td>
</tr>
</tbody>
</table>

Notes:
- BB = BroadBand
- Polarization: H = Horizontal
- Ambient Check: 96.1 MHz
- RBW = Reduced Bandwidth (kHz)
- V = Vertical
- MWA = Mixed With Ambient
- No signals observed above: 675.0 MHz
- Moved Cables at Worst Case Frequencies
- VBW = Video Band Width
- TSS BXXXXX
Test Type: Qualification

RADIATED EMISSIONS E FIELD

Data by Test Site Services Co

Test Site:	BXXXXX
Engineer:	R Wiedeman
Technician:	J Doe
Date:	13/32/00
Power:	230VAC50Hz
Spec:	FCC

EUT: YOURCOMPANY

EUT: YOURPRODUCT

Receiver BW: 10KHz

Temperature: 66 F

Rel. Humidity: 37 %

<table>
<thead>
<tr>
<th>Freq (MHz)</th>
<th>Signal Level (dBuV)</th>
<th>Antenna Polariz (H/V)</th>
<th>Antenna Height (cm)</th>
<th>Table Azimuth (Degrees)</th>
<th>Detector P/QP</th>
<th>Antenna Factor (dB)</th>
<th>Cable Loss (dB)</th>
<th>Amp. Factor (dB)</th>
<th>Product Level (dBuV/M)</th>
<th>Limit FCC A (dBuV/M)</th>
<th>Margin (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1200.00</td>
<td>47.6</td>
<td>V</td>
<td>100</td>
<td>384</td>
<td>P</td>
<td>23.9</td>
<td>4.0</td>
<td>-35.9</td>
<td>39.6</td>
<td>60.0</td>
<td>-20.4</td>
</tr>
<tr>
<td>1320.00</td>
<td>46.2</td>
<td>V</td>
<td>100</td>
<td>20</td>
<td>P</td>
<td>24.3</td>
<td>4.3</td>
<td>-35.7</td>
<td>39.1</td>
<td>60.0</td>
<td>-20.9</td>
</tr>
<tr>
<td>1500.00</td>
<td>45.9</td>
<td>V</td>
<td>100</td>
<td>365</td>
<td>P</td>
<td>24.8</td>
<td>4.5</td>
<td>-35.4</td>
<td>39.8</td>
<td>60.0</td>
<td>-20.2</td>
</tr>
<tr>
<td>1617.50</td>
<td>49.3</td>
<td>V</td>
<td>100</td>
<td>365</td>
<td>P</td>
<td>25.7</td>
<td>4.6</td>
<td>-35.4</td>
<td>44.2</td>
<td>60.0</td>
<td>-15.8</td>
</tr>
<tr>
<td>1650.00</td>
<td>47.7</td>
<td>V</td>
<td>100</td>
<td>0</td>
<td>P</td>
<td>25.9</td>
<td>4.7</td>
<td>-35.3</td>
<td>43.0</td>
<td>60.0</td>
<td>-17.0</td>
</tr>
<tr>
<td>1716.00</td>
<td>47.1</td>
<td>V</td>
<td>100</td>
<td>391</td>
<td>P</td>
<td>26.4</td>
<td>4.8</td>
<td>-35.3</td>
<td>43.0</td>
<td>60.0</td>
<td>-17.0</td>
</tr>
</tbody>
</table>

Note:
- BB = BroadBand
- Polarization: H = Horizontal
- Ambient Check:
- RBW = Reduced Bandwidth (kHz)
- V = Vertical
- MWA = Mixed With Ambient
- No signals observed above: 1716.0 MHz
- Moved Cables at Worst Case Frequencies

Note: VBW = Video Band

TSS BXXXXX
<table>
<thead>
<tr>
<th>Freq (MHz)</th>
<th>Detector</th>
<th>Hot Lead 1 P/QP</th>
<th>Hot Lead 2 dBuV</th>
<th>Hot Lead 3 dBuV</th>
<th>Neut Lead</th>
<th>Cable Loss</th>
<th>Corr</th>
<th>Product Limit</th>
<th>Limit CISPR A dBuV</th>
<th>Margin CISPR A dBuV</th>
<th>Margin of Comments</th>
<th>Side of Line</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1952 P</td>
<td>P</td>
<td>59.5</td>
<td>62.3</td>
<td>61.0</td>
<td>60.1</td>
<td>0.1</td>
<td>0.0</td>
<td>62.4</td>
<td>66.0</td>
<td>-3.6</td>
<td>N/A</td>
<td>Neut</td>
</tr>
<tr>
<td>0.2393 P</td>
<td>P</td>
<td>51.4</td>
<td>50.7</td>
<td>51.7</td>
<td>50.9</td>
<td>0.1</td>
<td>0.0</td>
<td>51.8</td>
<td>66.0</td>
<td>-14.2</td>
<td>N/A</td>
<td>Hot</td>
</tr>
<tr>
<td>0.2920 P</td>
<td>P</td>
<td>47.2</td>
<td>45.7</td>
<td>47.0</td>
<td>48.4</td>
<td>0.2</td>
<td>0.1</td>
<td>48.7</td>
<td>66.0</td>
<td>-17.3</td>
<td>N/A</td>
<td>Neut</td>
</tr>
<tr>
<td>0.5220 P</td>
<td>P</td>
<td>42.2</td>
<td>45.2</td>
<td>41.8</td>
<td>44.8</td>
<td>0.2</td>
<td>0.1</td>
<td>45.5</td>
<td>60.0</td>
<td>-14.5</td>
<td>-14.5</td>
<td>Neut</td>
</tr>
<tr>
<td>3.2840 P</td>
<td>P</td>
<td>37.8</td>
<td>38.3</td>
<td>38.4</td>
<td>38.8</td>
<td>0.6</td>
<td>0.1</td>
<td>39.5</td>
<td>60.0</td>
<td>-20.5</td>
<td>-30.0</td>
<td>Neut</td>
</tr>
<tr>
<td>5.0350 P</td>
<td>P</td>
<td>43.5</td>
<td>48.6</td>
<td>51.9</td>
<td>43.5</td>
<td>0.8</td>
<td>0.1</td>
<td>52.8</td>
<td>60.0</td>
<td>-7.2</td>
<td>-16.7</td>
<td>Both</td>
</tr>
<tr>
<td>5.6280 P</td>
<td>P</td>
<td>45.9</td>
<td>52.3</td>
<td>55.0</td>
<td>49.9</td>
<td>0.8</td>
<td>0.1</td>
<td>55.9</td>
<td>60.0</td>
<td>-4.1</td>
<td>-13.6</td>
<td>Neut</td>
</tr>
<tr>
<td>9.4400 P</td>
<td>P</td>
<td>44.1</td>
<td>45.9</td>
<td>44.3</td>
<td>45.4</td>
<td>1.2</td>
<td>0.4</td>
<td>47.5</td>
<td>60.0</td>
<td>-12.5</td>
<td>-22.0</td>
<td>Neut</td>
</tr>
<tr>
<td>10.0790 P</td>
<td>P</td>
<td>45.4</td>
<td>46.6</td>
<td>45.7</td>
<td>47.8</td>
<td>1.3</td>
<td>0.7</td>
<td>49.8</td>
<td>60.0</td>
<td>-10.2</td>
<td>-19.7</td>
<td>Neut</td>
</tr>
<tr>
<td>12.2100 P</td>
<td>P</td>
<td>53.0</td>
<td>51.1</td>
<td>47.6</td>
<td>53.7</td>
<td>1.3</td>
<td>0.7</td>
<td>55.7</td>
<td>60.0</td>
<td>-4.3</td>
<td>-13.8</td>
<td>Neut</td>
</tr>
<tr>
<td>15.1600 P</td>
<td>P</td>
<td>46.4</td>
<td>44.9</td>
<td>44.3</td>
<td>52.4</td>
<td>1.4</td>
<td>0.8</td>
<td>54.6</td>
<td>60.0</td>
<td>-5.4</td>
<td>-14.9</td>
<td>Neut</td>
</tr>
<tr>
<td>20.0200 P</td>
<td>P</td>
<td>46.4</td>
<td>39.7</td>
<td>44.1</td>
<td>47.1</td>
<td>1.6</td>
<td>1.6</td>
<td>50.3</td>
<td>60.0</td>
<td>-9.7</td>
<td>-19.2</td>
<td>Neut</td>
</tr>
<tr>
<td>21.7200 P</td>
<td>P</td>
<td>39.9</td>
<td>35.1</td>
<td>39.1</td>
<td>37.6</td>
<td>1.6</td>
<td>1.7</td>
<td>43.2</td>
<td>60.0</td>
<td>-16.8</td>
<td>-26.3</td>
<td>Hot</td>
</tr>
<tr>
<td>29.2400 P</td>
<td>P</td>
<td>48.7</td>
<td>46.9</td>
<td>48.5</td>
<td>45.4</td>
<td>1.9</td>
<td>2.2</td>
<td>52.8</td>
<td>60.0</td>
<td>-7.2</td>
<td>-16.7</td>
<td>Hot</td>
</tr>
</tbody>
</table>

Note: BB = Broad Band.
Note: RBW = Reduced Band Width.
Note: MWA = Mixed With Ambient.
Note: FCC and CISPR Margins Reflect Data Taken With Reference Distance = 40cm from Vertical Wall for All Measurements.
Note: FCC and CISPR Margins Reflect Data Taken at 230VAC50Hz.
Conducted Emissions (LISN)

Data by Test Site Services Co

Test Type: Qualification
Engineer: R. Wiedeman
Date: 13/32/00
Tech: J. Doe
Power: 208VAC60Hz
Spec: CISPR
Class: A

EUT: YOURCOMPANY.
Tech: YOURPRODUCT
Engineer: R. Wiedeman
Date: 13/32/00
Power: 208VAC60Hz
Spec: CISPR
Class: A

LISN: Schwarzbeck
Relative Humidity: 42%
LISN: Schwarzbeck
Temperature: 71 F
Test: BXXXXX

Receiver BW: 200 Hz from 10 kHz - 150 kHz
9 kHz from 150 kHz - 30 MHz

<table>
<thead>
<tr>
<th>Freq (MHz)</th>
<th>Detector Loss</th>
<th>Hot Lead 1 (dBuV)</th>
<th>Hot Lead 2 (dBuV)</th>
<th>Hot Lead 3 (dBuV)</th>
<th>Neut Lead (dB)</th>
<th>Cable Loss (dB)</th>
<th>Corr Fact (dB)</th>
<th>Product Limit (dBuV)</th>
<th>Limit CISPR A (dBuV)</th>
<th>Margin CISPR A (dB)</th>
<th>Margin CISPR A (AVEdB)</th>
<th>FCC Line Comments</th>
<th>Side of Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1920 P</td>
<td>60.1</td>
<td>60.3</td>
<td>60.0</td>
<td>0.1</td>
<td>0.0</td>
<td>60.4</td>
<td>66.0</td>
<td>-5.6</td>
<td>N/A</td>
<td>Hot</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.2497 P</td>
<td>49.4</td>
<td>49.7</td>
<td>51.1</td>
<td>0.1</td>
<td>0.0</td>
<td>51.2</td>
<td>66.0</td>
<td>-14.8</td>
<td>N/A</td>
<td>Hot</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.2920 P</td>
<td>43.3</td>
<td>43.2</td>
<td>43.5</td>
<td>0.2</td>
<td>0.1</td>
<td>43.8</td>
<td>66.0</td>
<td>-22.2</td>
<td>N/A</td>
<td>Hot</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.7940 P</td>
<td>42.7</td>
<td>42.2</td>
<td>42.7</td>
<td>0.3</td>
<td>0.0</td>
<td>43.0</td>
<td>60.0</td>
<td>-17.0</td>
<td>-17.0</td>
<td>Hot</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.569 P</td>
<td>44.6</td>
<td>45.8</td>
<td>50.5</td>
<td>0.4</td>
<td>0.0</td>
<td>50.9</td>
<td>60.0</td>
<td>-9.1</td>
<td>-9.1</td>
<td>Hot</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.6570 P</td>
<td>44.2</td>
<td>45.2</td>
<td>45.5</td>
<td>0.7</td>
<td>0.1</td>
<td>46.3</td>
<td>60.0</td>
<td>-13.7</td>
<td>-23.2</td>
<td>Hot</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.6850 P</td>
<td>52.1</td>
<td>51.2</td>
<td>54.3</td>
<td>0.8</td>
<td>0.1</td>
<td>55.2</td>
<td>60.0</td>
<td>-4.8</td>
<td>-14.3</td>
<td>Hot</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.0960 P</td>
<td>43.7</td>
<td>43.7</td>
<td>46.7</td>
<td>1.2</td>
<td>0.3</td>
<td>48.2</td>
<td>60.0</td>
<td>-11.8</td>
<td>-21.3</td>
<td>Hot</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.6890 P</td>
<td>49.1</td>
<td>46.3</td>
<td>46.9</td>
<td>1.2</td>
<td>0.5</td>
<td>50.8</td>
<td>60.0</td>
<td>-9.2</td>
<td>-18.7</td>
<td>Hot</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.0000 P</td>
<td>53.7</td>
<td>52.0</td>
<td>50.7</td>
<td>1.4</td>
<td>0.6</td>
<td>55.7</td>
<td>60.0</td>
<td>-4.3</td>
<td>-13.8</td>
<td>Hot</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.5200 P</td>
<td>53.1</td>
<td>51.3</td>
<td>50.9</td>
<td>1.4</td>
<td>0.6</td>
<td>55.1</td>
<td>60.0</td>
<td>-4.9</td>
<td>-14.4</td>
<td>Hot</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.0000 P</td>
<td>45.5</td>
<td>44.9</td>
<td>50.9</td>
<td>1.6</td>
<td>0.8</td>
<td>53.3</td>
<td>60.0</td>
<td>-6.7</td>
<td>-16.2</td>
<td>Hot</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.5100 P</td>
<td>42.0</td>
<td>35.3</td>
<td>35.3</td>
<td>1.7</td>
<td>1.6</td>
<td>45.3</td>
<td>60.0</td>
<td>-14.7</td>
<td>-24.2</td>
<td>Hot</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27.1900 P</td>
<td>49.5</td>
<td>39.8</td>
<td>39.0</td>
<td>1.8</td>
<td>1.7</td>
<td>53.0</td>
<td>60.0</td>
<td>-7.0</td>
<td>-16.5</td>
<td>Hot</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: BB = Broad Band.
Note: RBW = Reduced Band Width.
Note: MWA = Mixed With Ambient.
Note: FCC and CISPR Margins Reflect Data Taken With Reference Distance = 40cm from Vertical Wall for All Measurements.
Note: FCC and CISPR Margins Reflect Data Taken at 208VAC60Hz.
Appendix B

TEST PHOTOGRAPHS
RADIATED EMISSIONS PHOTOGRAPHS

![Photograph of Test Site Services, Inc. facility]

![Photograph of EMC Test Facility entrance]

Your Company Name 1/22/00 EUT: Your Product
CONDUCTED EMISSIONS PHOTOGRAPHS
CONDUCTED EMISSIONS PHOTOGRAPHS
Appendix C

TEST PROCEDURES
Test Procedures - EMI Operational Description

GENERAL

For each emission signal, maximum level is achieved for both horizontal and vertical polarizations as well as (0-360) degrees turntable rotation.

Antenna Test Distances are selected at either 3, 10 or 30 meters separation from the EUT in accordance with applicable specification requirements.

Antenna Scan Heights are varied from 1-4 meters at Antenna Test Distances of 3, 10 and 30 meters.

FCC RADIATED EMISSIONS (E-FIELD)

EMI test procedures are performed in accordance with the requirements of ANSI C63.4 (1992). Measurements are initially obtained using broad band antennas and PEAK detection. In addition, cables are manipulated to maximize emissions within constraints of a typical system configuration. All measured data within 3 db of the Radiated Limits are retaken using Tuned Dipole Antennas (Roberts Type) and QUASI-PEAK (CISPR) Detection. Each EUT is powered from a 60Hz AC source.

FCC CONDUCTED EMISSIONS

EMI test procedures are performed in accordance with the requirements ANSI C63.4 (1992). Measurements are initially obtained with PEAK Detection. In addition, cables are manipulated to maximize emissions within constraints of a typical system configuration. All measured data within 3 db of the Conducted Limits are retaken using QUASI-PEAK (CISPR) Detection. Each EUT is powered from a 60Hz AC source.

CISPR22/EN55022 RADIATED EMISSIONS (E FIELD)

EMI test procedures are operated in accordance with the requirements of the CISPR22 (1993) and EN55022 (1987) Documents. Measurements are initially obtained with PEAK Detection. In addition, cables are manipulated to maximize emissions within constraints of a typical system configuration. All measured data within 3 db of the Radiated Limits are retaken using QUASI-PEAK (CISPR) detection. Each EUT is powered from a 50Hz AC source.

CISPR22/EN55022 CONDUCTED EMISSIONS

EMI test procedures are operated in accordance with the requirements of the CISPR22 (1993) and EN55022 (1987) Documents. Measurements are initially obtained with PEAK Detection. In addition, cables are arranged per the specification within constraints of a typical system configuration. All measured data exceeding 3 db below the Conducted QP Limit are retaken using QUASI-PEAK (CISPR) Detection. All measured data exceeding 2 db below the Conducted AVERAGE Limit are retaken using AVERAGE (CISPR) Detection. Each EUT is powered from a 50Hz AC source.
Appendix D

MEASUREMENT FACILITIES
INFORMATION
DESCRIPTION of MEASUREMENT FACILITIES

The Open Area Test Site (OATS) is composed of a building and associated ground screen with a control room underneath.

The building is a TUFF-SPAN enclosure constructed of fiberglass reinforced plastic materials which provide above-ground weather protection. These materials are non conductive, non magnetic and RF transparent. They do not impact the surrounding electromagnetic environment and are corrosion resistant. The enclosure size permits Ten Meter Radiated Measurements within its confines and utilizes a remote controlled Macton Turntable Assembly. The conductive turntable is 16 feet in diameter and capable of moving a 10,000 pound load a full 360 degrees of rotation. It is flush-mounted to the ground screen and edge bonded circumferentially to the ground screen with beryllium copper "fingers". The ground screen is constructed of welded wire mesh lying directly on top of a concrete-over-steel foundation. The screen is extended beyond the building itself to provide 30 meter measurement capability when needed. There are no reflecting objects within the required obstruction free oval area.

The control room is located beneath the ground screen level with stairwell access to the ground plane area. An elevator is located beyond the ground screen and provides access to the control room, shipping dock and ground screen areas for large sized EUT's. Primary power cabling to the EUT is fed through a hole in the center of the table along with necessary EUT/Support Equipment interface cabling. A remote controlled EMCO Antenna Mast Assembly is located on the ground screen. It provides the operator with adjustable antenna height over the 1 meter through 4 meter range as well as allowing both horizontal and vertical polarizations at any height.

A conducted emissions measurement area is located in a shielded room and consists of a conductive (galvanized sheet metal) wall 20' wide x 8' high with a metal floor bonded to the wall. AC Power is supplied through receptacles located on the vertical wall. Each receptacle is adequately filtered using Shielded Room EMI Power Line Filters (Rayproof 1B42 Units) which provide 100 db attenuation over the 14KHz to 10GHz frequency range. The shielded room itself is bonded directly to earth ground.

Additionally, both the control room/shielded rooms and ground plane area have heating, air conditioning and relative humidity controlled environments.
Capability

Test Site Service’s open area Test Sites have been evaluated in accordance with ANSI C63.4 procedures and found to be in compliance with ANSI C63.4-(1992) Site Attenuation and LISN requirements.

In addition, Test Site Services is Assessed and Approved annually by a European Competent Body to assure competence in testing products for CE Mark Compliance (Emissions and Immunity).

All of Test Site Service’s measurement facilities meet the technical requirements for qualification testing of products to FCC, CISPR, IEC, VCCI, BSMI and other International Standards.

Accreditation / Approval

- FCC Registered
- VCCI Registered
- BSMI Accreditation
- NVLAP Accredited
- AUSTEL Listed
- New Zealand Approved (Ministry of Commerce)
- Competent Body Assessment / Approval (Technology International, UK)
- Sub-Accredited by Hewlett Packard (Mass. Medical Environmental Test Lab.)
- NARTE certified EMC Engineers
EMC Facility Client Satisfaction Questionnaire

Thank you for choosing to use the Test Site Services EMC test facilities to test your product. Client satisfaction is very important to Test Site Services. To help serve you fully and continue to make improvements in our service, we need your feedback and comments on the service we performed for you today. We would appreciate your taking a few moments to complete this questionnaire.

1. Did scheduling meet your needs ________________________________

2. Test operator support __

3. Personnel attitude __

4. Efficiency of test process ___

5. Work completed in a timely manner ________________________________

6. Report received in a timely manner _________________________________

7. Report content and clarity ___

8. Overall rating ___

9. Additional Comments:

Completed By: ________________________________

Please return to: Lab Manager or Richard L. Wiedeman
(At Test Site) President
Test Site Services, Inc.
PO Box 766

Marlboro, MA 01752